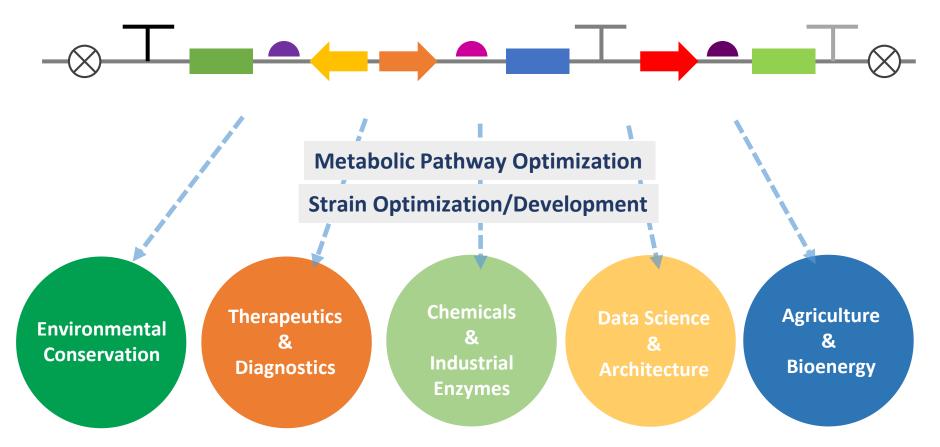


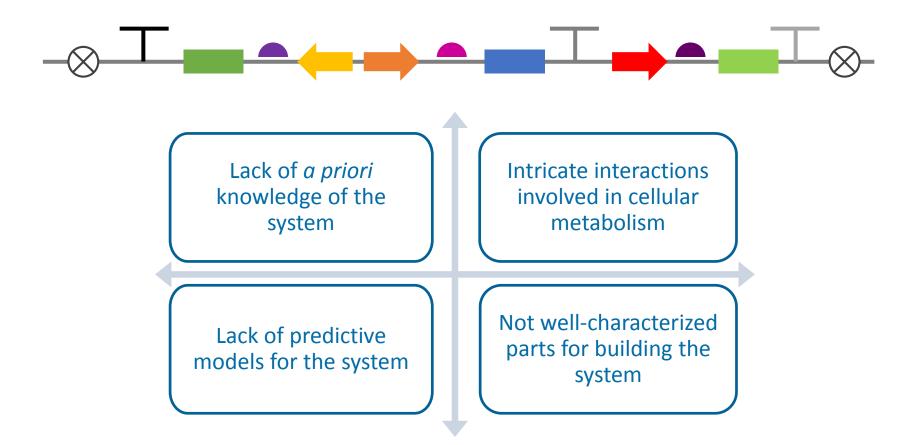
Building DNA Libraries to Explore the Combinatorial Design Space

Dr. Yifan Li Senior Scientist GenScript USA Inc.

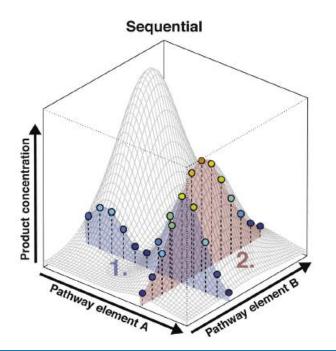
Case Studies for Combinatorial Optimization



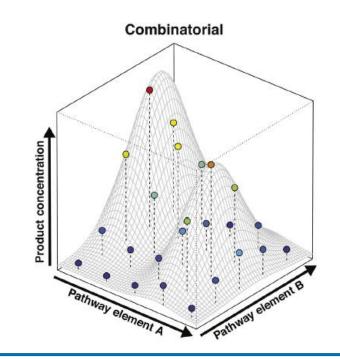
Combinatorial DNA Library Services


Building Metabolic Pathways and Gene Circuits for Diverse Applications

Using biological data and engineering principles to design and build novel biological systems or optimize natural systems in a more predictable and reliable manner for useful purposes.

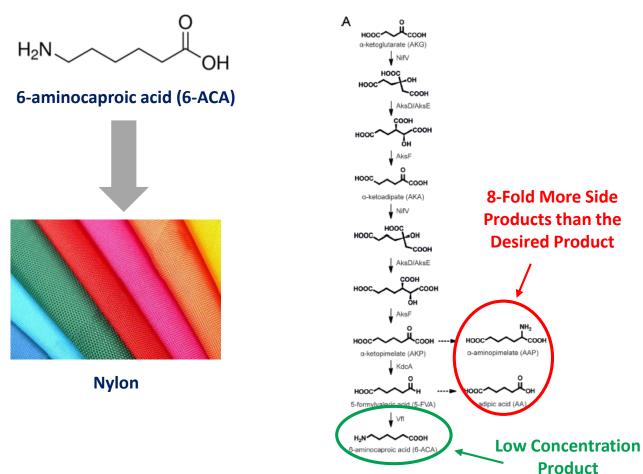


Challenges in Engineering Biological Systems



Sequential vs Combinatorial Optimization

- For sequential pathway optimization, a pathway element is varied individually (blue curve) until a local optimum is identified.
- The best point is fixed as a starting point for the optimization of a second element (red curve) and so forth.


- For combinatorial pathway optimization, multiple elements are varied simultaneously.
- Combinatorial optimization allows for systematic screening of the multidimensional space and is more likely to reach a global optimum (red point).

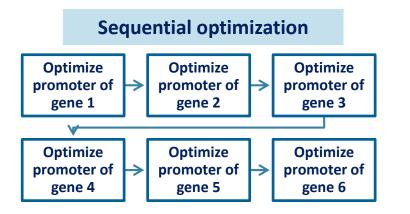
Curr Opin Biotechnol. 2017 Oct;47:142-151.

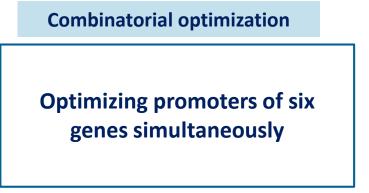
Biosynthetic Pathway for the Production of 6-ACA

Product

6-ACA Biosynthetic Pathway

- 6-ACA is the linear form of caprolactam, ٠ which is the chemical building block of nvlon-6.
- The building block is currently produced • from fossil-based chemical processes, which leads to significant greenhouse gas emission.
- The natural 6-ACA biosynthetic pathway ٠ consists of six heterologous enzymes.
- The existing cell factory: ٠
 - produced the desired product at only • [8 mg/L],
 - there was 8-fold more side products • than the desired product in the broth.





Pathway Optimization for 6-ACA Production

		4	₅ ₽°₽<u></u>⊓		aksD → • • • • • • • • • • • • • • • • • • •			
		8	Spacer	Spacer	Spacer	Spacer	Spacer	Spacer
Insula	ators	9	RiboJ00	RiboJ10	RiboJ53	SarJ	ElvJ	BydvJ
		Π	DT11	DT5	DT15	DT6	DT16	DT10
RB	s	•	V001	F002	D003	E004	K005	VF006
Library	+1	┍►	149 ± 8	125 ± 9	83 ± 10	85 ± 5	118 ± 12	316 ± 14
promoters (au)	-1	▶	71±5	56 ± 6	51±5	50 ± 5	61±5	67±8

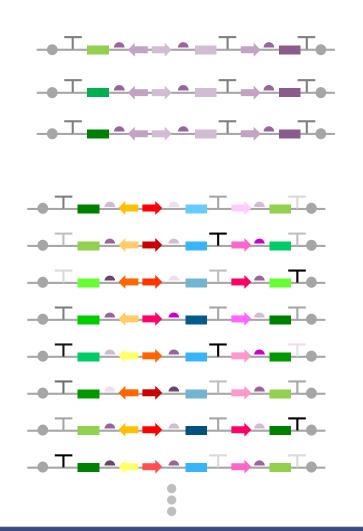
Testing strong vs weak expression for each of the six genes in the pathway

Nucleic Acids Res. 2015 Dec 2;43(21):10560-70.

Combinatorial Optimization for 6-ACA Production

40 60

Cluste	r				Codi	ng					OD ₆			6-ACA (r	
No.		aksF	aksD			-	Fe ³⁺ /C	Vit B ₄	Mg ²⁺		20 10) 0	0	20 40	0 (
20	-1	+1	-1	+1	-1	+1	-1	+1	+1					ŀ	-
52	-1				+1	-	-1	+1	-1		H				
14	-1	-1	•		+1		+1	+1	+1		H			F	-
8	-1	+1	+1	-1	-	-1	-1	+1	+1	⊸ <mark>₽°°∽</mark> ∏₀₽°°≈⇒∏₀₽°°≈⇒∏₀₽°°≈⇒∏₀₽°°≈⇒∏	H				
9	+1	-1	+1	-1		-1	-1	+1	-1		H.			H	-
41	+1	-1	-1	+1	-1	+1	-1	+1	-1	₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	H			T	H
56	-1	+1	-1	-1	-1	-1	+1	+1	-1					H	•
21	-1	-1	+1	-1	-1		-1	+1	-1		H				
12	-1	-1	+1			-1	+1	+1	+1		H			H	
4	+1	+1	+1	-1	-1		-1	+1	+1	─── ₽°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°				H	
25	+1	+1	+1			-1	+1	+1	-1	⊸₱ <mark>₽°∞→Ⅲ₀₽<u>₽°∞→</u>Ⅲ₀₽<u>₽°∞</u>→Ⅲ₀₽<u>₽°∞</u>→Ⅲ₀₽<u>°</u>∞→Ⅲ</mark>					
45	+1	+1	-1	+1	-	-1	-1	+1	+1	──° ₽₅ <u>₩</u> °₽ [₽] °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	H			H	
39	+1	-1	-1	-1		-1	+1	+1	+1	⊸₱ <mark>₽₽</mark> ₽ <mark>₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽</mark>					
60	+1	-1	+1	+1	+1	+1	+1	+1	+1	<u>⊸₱₽₽₽₽₩₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽</u>				Ŧ	
11	-1	+1	+1	+1	+1	+1	+1	+1	-1	<u>⊸°₽°°°™™™°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°</u>	-			H	
53	+1	+1	-1	-1	+1	+1	+1	+1	-1	<u>₽₽₽₽T₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽</u>				F-I	
32	-1	-1	+1	+1	+1	+1	-1	-1	+1	──° ╘╸┙╨°╘╸┙╨°╘╸┙╨°╘╸┙╨°╘╸┙ ш°╘	H		. ,	H	
63	-1	-1	-1	-1	-1	-1	-1	-1	+1	<u>→₽₽₽₩₩₽₽₽₽₩₽₽₽₽₩₽₽₽₽₽₩₽₽₽₽₽₩₽₽₽₽₽₽₩₽₽₽₽₽₽</u>	H.			H I	
51	-1	+1	-1	-1	+1	+1	-1	-1	-1	<u>⊸₽°°¬∏₀₽°°¬⇒∏₀₽°°¬⇒∏₀₽°¬⇒</u> ∏₀₽°°¬⇒∏			E F	H	
61	-1	+1	+1	+1	-1	-1	-1	-1	-1	<u>⊸₽°°¬₩₽°°¬₩₽°°¬₩₽°°¬₩₽°°</u> ₩₽°°° <u>¬₩</u>	- E				
24	+1	+1	-1	-1	-1	-1	-1	-1	-1	╶╺ <mark>╔╪╬_{╔┙}╨┉╪╏┉┙╨┉╪╏┉╇┟┉╧╏</mark> ┉╇╻╘ _┇ ╨┉╪╏┉╝╖	H		H	•	
23	+1	-1	-1	-1	+1	+1	-1	-1	+1	── [─] ─ [─] [™]	H		H		
54	+1	-1	+1	+1	-1	-1	-1	-1	+1	_₀₱°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°					
26	-1	-1	-1	+1	-1	+1	+1	-1	-1	── [─] [™]	н		H	1	
1	+1	+1	+1	+1	+1	+1	-1	-1	-1	_₀₽°°₀ <u>₩</u> ₀₽°°₀ <u>₩</u> ₀₽°°₀ <u>₩</u> ₀₽°°₀ <u>₩</u> ₀₽°°₀ <u>₩</u>	H				
34	+1	+1	+1	-1	+1	-1	+1	-1	+1	──◇┍╾╏┉┷╻┉╘╻┙╨┉╾╻┉┶╻┉╨┉╾╻┉╻┉╻┉╻┉	-				
48	-1	+1	+1	-1	-1	+1	+1	-1	+1				- He		
62	+1	-1	+1	-1	-1	+1	+1	-1	-1	──○ <mark>⋿[*]°°</mark> T° L° , T° L° °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	-				
17	-1	-1	+1	-1	+1	-1	+1	-1	-1		H				
30	-1	+1	-1	+1	+1	-1	+1	-1	+1						
35	+1	+1	-1	+1	-1	+1	+1	-1	+1						
16	+1	-1	-1	+1	+1	-1	+1	-1	-1		H_				
eAKP	672														
0.40		_		_	_										

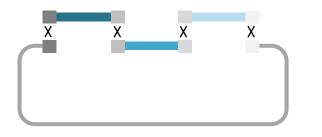

Three additional factors to consider in media ٠ composition:

- [ferric citrate] ٠
- [vitamin B1] ٠
- [magnesium ion (Mg2+)] ٠
- In total, nine factors were optimized simultaneously. ٠
- Total library size was 2⁹, which equals to 512 different ٠ combinations.
- "Design of Experiment" was used to reduce combinatorial library size.
- Finally, with a single round of combinatorial optimization, 6-ACA production was increased by 5 folds.

Combinatorial Optimization Requires a Powerful Assembly Method

Sequential optimization

- Tests:
 - less than 10 constructs at a time
 - one part at a time
- Time-consuming and costly

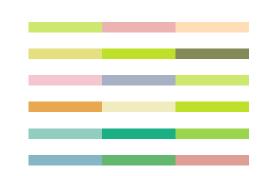

Combinatorial optimization

- Tests:
 - hundreds and thousands constructs in parallel
 - multiple parts simultaneously
- Efficient and cost-effective

Pathway Assembly Platforms

In vitro Homologous Recombination

- Low throughput
- Low efficiency with >5 parts
- Expensive


Golden Gate Assembly

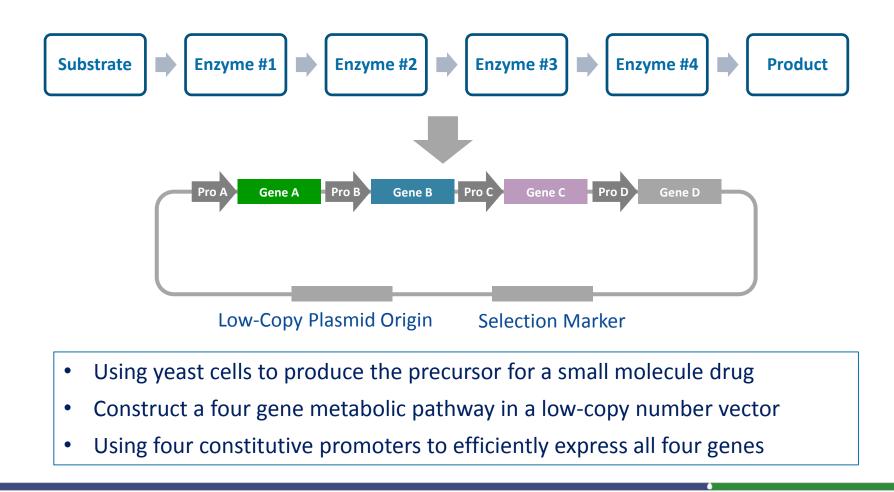
• Based on Type IIs enzyme

• Has sequence limitation

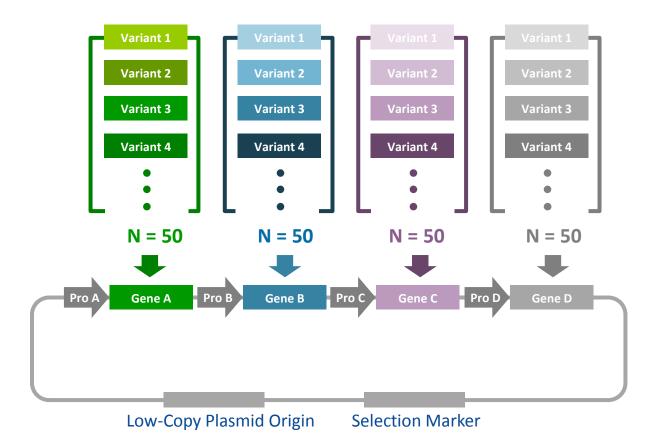
GenScript's Platform

- High throughput
- No sequence limitation
- Seamless (no scars)
- Highly efficient with up to 10 parts and 20 kb insert size

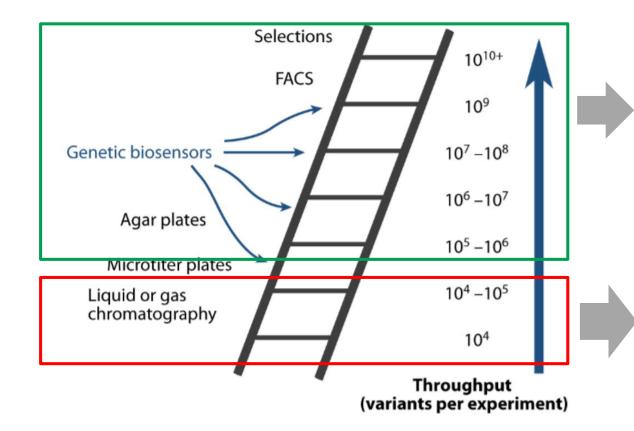
Case Studies for Combinatorial Optimization



Combinatorial DNA Library Services

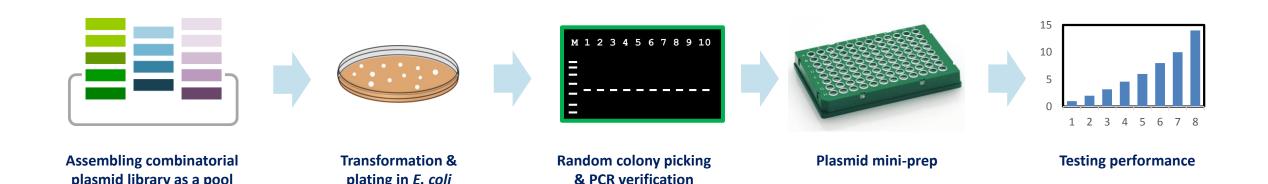

Case #1: Metabolic Pathway Design and Construction

Objective: Improving metabolite (*i.e.* product) yield


Case #1: Pathway Optimization by Testing Different Enzyme Variants

- Identified 50 variants for each pathway gene through database blasting and literature search.
- Design: Random insertion of 50 gene variants in each CDS position in the pathway
- Theoretical library size: 6,250,000

Case #1: Throughput Screening for Different Testing Methods



- Testing method: growth-based selection or visual selection of pigment
- Screening capacity: >10⁶ library size
- Explore a large library size with pooled constructs.
- Testing method: chromatography
- Screening capacity: <10³ library size
- Carefully design parameters in the project or use "Design of Experiment" to reduce library size.

Annu Rev Biochem. 2010;79:563-90.

Case #1: Exploring Combinatorial Library by Randomly Picking Clones

Workflow

plasmid library as a pool

Library construction as a pool – putting all fragments into the reaction

plating in E. coli

- Randomly tested 2,000 colonies; ~1600 of them have • inserts, indicating an 80% positive rate.
- Mini-prepped all plasmids with HT platform, followed by transformation of plasmids into appropriate expression host to test performance.

Key Points:

- By not assembling and sequencing all combinations, lots of money and effort was saved.
- By testing a sub-library, enough time was saved for HPLC testing.
- Colony PCR verification ensures that every tested clone ٠ was positive (*i.e.* contained the designed components).

Case #1: Testing Library Diversity to Ensure Maximum Coverage

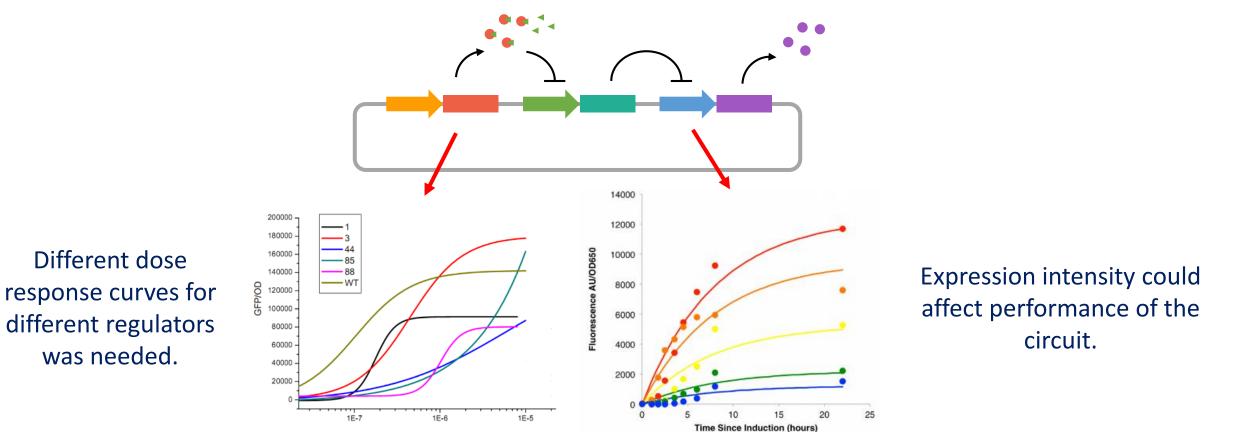
Combination #	Enzyme A#	Enzyme B#	Enzyme C#	Enzyme D#
1	45	25	40	19
2	8	24	16	30
3	49	37	32	6
4	9	41	31	30
5	36	10	22	8
6	44	13	37	4
7	15	44	14	2
8	23	28	4	13
9	15	44	12	20
10	13	12	29	47
11	32	37	3	40
12	36	18	31	5
13	29	1	3	17
14	21	23	27	22
15	2	28	36	25
16	38	27	35	45
17	4	28	50	35
18	40	32	35	35
19	4	16	18	9
20	18	8	39	4
21	33	10	28	7
22	48	40	40	44
23	31	34	16	37
24	21	6	22	9

Combination #	EnzymeA #	EnzymeB #	EnzymeC #	Enzyme D#
25	43	1	6	26
26	14	36	48	9
27	10	25	26	15
28	34	24	10	4
29	32	1	32	50
30	11	30	21	7
31	2	43	46	28
32	38	46	1	49
33	13	18	47	3
34	37	50	40	5
35	8	17	42	41
36	5	22	49	38
37	5	19	1	10
38	20	4	48	38
39	47	27	31	49
40	14	46	23	2
41	16	47	24	49
42	13	29	14	11
43	36	37	19	23
44	3	32	2	36
45	45	34	2	37
46	35	5	3	14
47	35	22	15	19
48	15	36	39	49

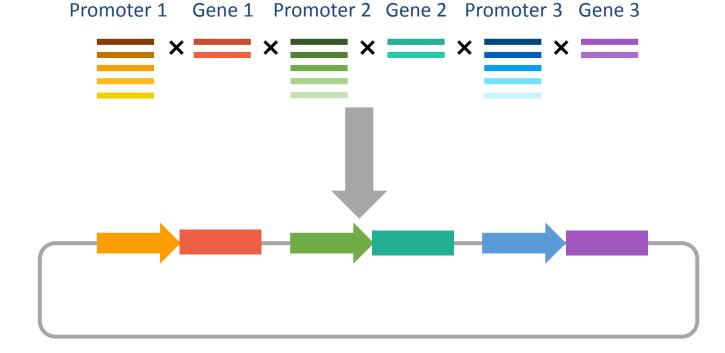
Analyzing the sequence of 48 randomly-picked clones demonstrated that 100% diversity was achieved.

Case #1: Screening for the Best Clones

Enzym e Production (Arbitrary Com bination Enzym e Enzym e Enzym e un it) A# B# C# # D

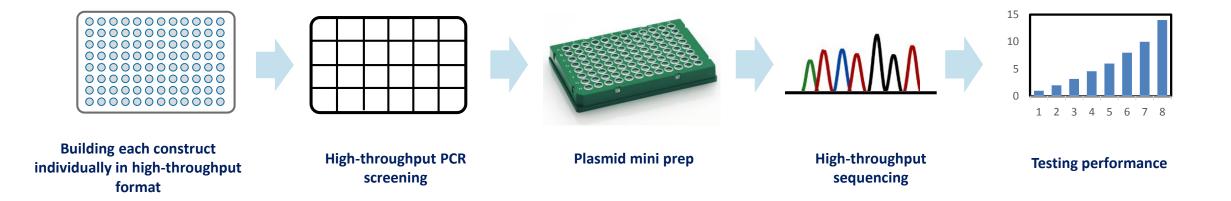

Top 24 Variants, Ranked by Production Level

- Tested all 2000 randomly-picked clones with HPLC analysis.
- Sequence analyzed the top 96 variants. (Top 24 variants are listed here.)
- Some of the enzyme variants were highly enriched in the good-performing clones.
- These good-performing enzyme variants can be further combinatorically tested in the next round of optimization.


Case #2: Optimizing Gene Circuits for Therapeutic Applications

Objective: Production of a functional protein upon sensing specific environmental signals

Case #2: Optimization of Gene Circuits



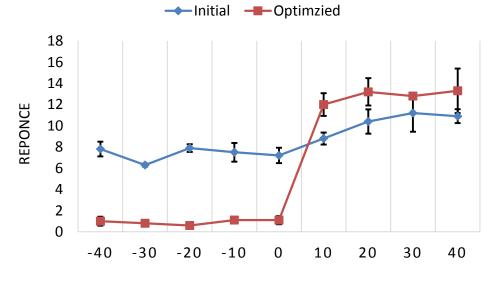
Project scope

- Testing five promoters with strength levels from very weak to very strong for gene expression
- Testing different versions of sensors and regulators
- Theoretical combination number: 5*2*5*2*5*2 = 1,000

Case #2: Construction & Testing of Each Combination Individually

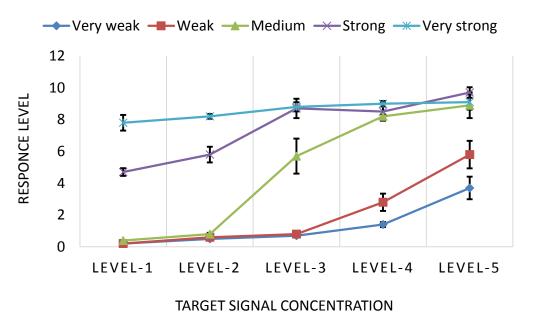
Workflow:

- Assembled 1,000 construct individually and acquired 943 perfect clone in the first run.
- Constructed the remaining 57 clones in the second run.


Key Points:

- Individual building and testing of every construct allowed for direct evaluation of each construct.
- Suitable for thoroughly explore the combinatorial design space
- Compatible with "Design of Experiment"

Case #2: Optimized Circuit exhibited Improved Performance


Response Curve after Induction

TIME AFTER INDUCTION (MIN)

The optimized circuit exhibited stronger and more prompt response behavior than the initial.

Inducer Dose Response for Promoter-3 Strength

The medium-strength promoter-3 showed the best dose-response behavior.

Summary of Case Studies

Case #1

Representative Combinatorial DNA Library

- Library construction as a pool
- Random colony-picking for downstream testing
- Saves a lot of money and effort
- Suited for the initial phase of biological optimization

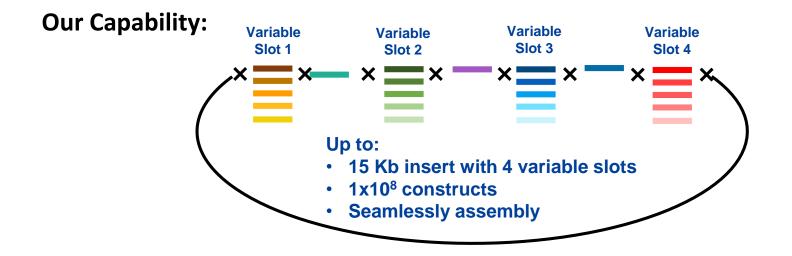
Case #2

Arrayed Combinatorial DNA Library

- Building and testing of every construct individually
- Suitable for thoroughly exploring the combinatorial design space
- Specifically suitable for optimizing nonlinear systems
- Compatible with "Design of Experiment"

Combinatorial Optimization for Metabolic Pathway Engineering

Case Studies for Combinatorial Optimization



Combinatorial DNA Library Services

Combinatorial DNA Libraries

Providing a highly customizable approach for accelerating the build phase of your metabolic pathway and microbial strain engineering process!

Applications:

- Metabolic Pathway & Microbial Strain Engineering
- Gene Expression Regulation
- Protein & Antibody Engineering

Combinatorial DNA Library Services

Pooled Combinatorial DNA Library

Assembling combinatorial plasmid library

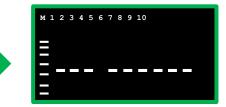
Constructing plasmid library as a pool

Delivering as pooled plasmids

Ideal for	 > 10⁴ throughput screening
	 For screening platforms that are not sensitive to the presence of negative clones
Service Features	 Cloned into pUC57 or custom vector with 4 μg in quantity
Service realures	 Delivering pooled a plasmid library with up to 1×10⁸ library size
OC Standarda	PCR verification of more than 48 clones to determine positive rate
QC Standards	Sequence verification of 24 positive clones with a guarantee on more than 85% diversity

Combinatorial DNA Libraries

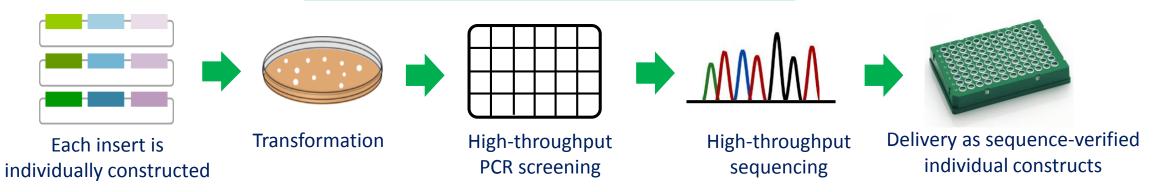
Representative Combinatorial DNA Library



Constructing Plasmid library as a pool

Transformation

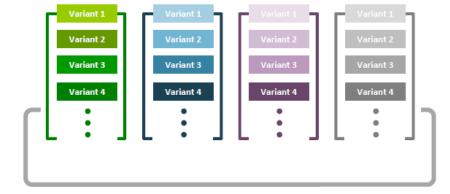
Random colony picking and PCR verification


Delivering randomly-picked & PCR-verified individual plasmids

Ideal for	 10² - 10⁴ throughput screening Screening a pool with no concern for the presence of exact sequence in each clone
Service Features	 Guaranteeing that every delivered construct contains all designed parts or modules Delivering up to 10,000 randomly-picked and PCR-verified individual constructs
	• Cloned into pUC57 or custom vector with 4 μ g in quantity
QC Standards	PCR verification of all delivered plasmids
	Sequence verification of 24 positive clones with a guarantee on more than 85% diversity

Combinatorial DNA Libraries

Arrayed Combinatorial DNA Library


Ideal for	Testing every single design in your library
Service Features	 Enabling the design of every construct in the library in any combination Delivering up to 10,000 sequence-verified individual constructs ready for transformation Cloned into pUC57 or custom vector with 4 μg in quantity
QC Standards	Each delivered plasmid is sequence-verified.

Combinatorial DNA Libraries: Advantages

Let DNA Building Experts Speed Up Your Metabolic Pathway and Microbial Strain Engineering Process!

- ✓ One-stop, high-throughput solution
- ✓ Highly-customizable
 - In pool or individual formats
 - Up to 1x10⁸ constructs (pooled library)
 - Up to 4 variable slots for 15 kb inserts
- ✓ Faster and more economical compared to your in-house operations
- ✓ Seamlessly assembled with advanced methods
- ✓ Expert advising on all project plans by our Ph.D.-level scientists

